

Circuit \& Field Theory
 Circuit Theory \& Control

LAPLACE TRANSFORM

YOU MAY GET STUDY MATERIAL FROM
AMIESTUDYCIRCLE.COM

INFO@AMIESTUDYCIRCLE.COM

WHATSAPP/CALL: 9412903929

Laplace Transform

The one sided Laplace transform of causal signals $f(t)=0$ for $t<0$, is defined as

$$
\begin{equation*}
F(s)=L[f(t)]=\int_{0}^{\infty} f(t) e^{-s t} d t \tag{1}
\end{equation*}
$$

where $s=\sigma+j \omega$ (complex frequency variable)
$\mathrm{L}=$ Laplace transform notation
The inverse Laplace transform of $f(t)$ of $F(s)$ and is given by the following complex domain integral

$$
\begin{equation*}
f(t)=\frac{1}{2 \pi j} \int_{\sigma-j \omega}^{\sigma+j \omega} F(s) e^{-s t} d s \tag{2}
\end{equation*}
$$

Symbolically transform pair(eq. 1 and 2) may be written as

$$
\begin{align*}
& \mathrm{F}(\mathrm{~s})=\mathrm{L}[\mathrm{f}(\mathrm{t})] \tag{3a}\\
& \mathrm{f}(\mathrm{t})=\mathrm{L}^{-1}[\mathrm{~F}(\mathrm{~s})] \tag{3b}
\end{align*}
$$

Also

$$
\begin{equation*}
f(t) \leftrightarrow F(s) \tag{4}
\end{equation*}
$$

LAPLACE TRANSFORM VS. FOURIER TRANSFORM

- The $j \omega$ or ω in the Fourier transform has the same position s in the Laplace transform.
- The limits of integration in the two transforms are different. In the Laplace transform it is one sided i.e. from 0 to ∞ whereas in Fourier transform it is two sided i.e. from $-\infty$ to ∞.
- The contours of integrations in the inverse transforms are different. In the Fourier transform it is along the imaginary axis whereas in the Laplace transform it is displaced by σ.
- The Laplace transform of $f(t)$ is identical with the Fourier transform of $f(t)$ multiplied by the convergence factor $\mathrm{e}^{-\sigma t}$.

Example

Find the Laplace transform of
i. $\quad \delta(t)$, an impulse function
ii. $\quad u(t)$, a unit step function
iii. $\quad e^{-\alpha t} u(t)$

[^0]A Focused Approach
(i) As per definition

$$
\begin{aligned}
L[\delta(t)] & =\int_{0}^{\infty} \delta(t) e^{-s t} d t \\
& =\int_{0}^{\infty} \delta(t)\left(\left.e^{-s t}\right|_{s t=0}\right) d t \\
& =\int_{0}^{\infty} \delta(t) d t \\
& =1
\end{aligned}
$$

$$
\begin{equation*}
\text { or } \quad \delta(t) \leftrightarrow 1 \tag{5}
\end{equation*}
$$

(ii)

$$
\begin{align*}
L[u(t)] & =\int_{0}^{\infty} u(t) e^{-s t} d t \\
& =\int_{0}^{\infty} e^{-s t} d t \\
& =-\left.\frac{1}{s} e^{-s t}\right|_{0} ^{\infty} \\
& =1 / s \\
u(t) & \leftrightarrow 1 / s \tag{6}
\end{align*}
$$

(iii)

$$
\begin{align*}
L\left[e^{-\alpha t} u(t)\right. & =\int_{0}^{\infty} e^{-\alpha t} e^{-s t} d t \\
& =\int_{0}^{\infty} e^{-(\alpha+s)} d t \\
& =\frac{1}{s+\alpha} \\
e^{-\alpha t} u(t) & \leftrightarrow \frac{1}{s+\alpha} \tag{7}
\end{align*}
$$

Example

Find Laplace transform of $\int_{0}^{t} f(t) d t$, given that $L[f(t)]=F(s)$.

Solution

$$
L\left(\int_{0}^{t} f(t) d t\right)=\int_{0}^{\infty}\left(\int_{0}^{t} f(t) d t\right) e^{-s t} d t
$$

The integration is carried out by parts^ where we let

- $\int u \cdot d v=u v-\int v \cdot d u$

$$
\begin{aligned}
& u=\int_{0}^{t} f(t) d t, d u=f(t) d t \\
& d v=e^{-s t} d t, v=\frac{-1}{s} e^{-s t}
\end{aligned}
$$

Hence

$$
L\left(\int_{0}^{t} f(t) d t\right)=\left.\frac{e^{-s t}}{s} \int_{0}^{t} f(t) d t\right|_{0} ^{\infty}+\frac{1}{s} \int_{0}^{\infty} f(t) e^{-s t} d t
$$

Now, the first terms vanishes since $e^{-s t}$ approaches zero for infinite t and at lower limit $\left.\int_{0}^{t} f(t) d t\right|_{t=0}=0$.

Hence

$$
L\left(\int_{0}^{t} f(t) d t\right)=-\frac{F(s)}{s}
$$

TABLE OF LAPLACE TRANSFORM

Some of the transform pairs have already been obtained in the examples earlier. In table 1 some commonly used transform pairs are presented. You should memorize this table.

Table 1: Laplace Transform Pairs

$\mathbf{f}(\mathbf{t})$	$\mathbf{F}(\mathbf{s})$
$\delta(\mathrm{t})$	1
$\mathrm{u}(\mathrm{t})$	$1 / \mathrm{s}$
$\mathrm{t} \cdot \mathrm{u}(\mathrm{t})$	$1 / \mathrm{s}^{2}$
$\mathrm{t}^{\mathrm{n}} . \mathrm{u}(\mathrm{t})$	$\frac{n!}{s^{n}+1}$
$\mathrm{e}^{-\alpha \mathrm{t}} \mathrm{u}(\mathrm{t})$	$\frac{1 /(\mathrm{s}+\alpha)}{1 /(\mathrm{s}+\alpha)^{2}}$
$\mathrm{te}^{-\alpha \mathrm{t}} \mathrm{u}(\mathrm{t})$	$\frac{n!}{(s+\alpha)^{n+1}}$
$\mathrm{t}^{\mathrm{n}} \mathrm{e}^{-\alpha \mathrm{t}} \mathrm{u}(\mathrm{t})$	$\frac{s}{s^{2}+\omega_{0}{ }^{2}}$
$\cos \omega_{0} \mathrm{t} . \mathrm{u}(\mathrm{t})$	$\frac{\omega_{0}}{s^{2}+\omega_{0}{ }^{2}}$
$\sin \omega_{0} \mathrm{t} . \mathrm{u}(\mathrm{t})$	$\frac{s+\alpha}{(s+\alpha)^{2}+\omega_{0}{ }^{2}}$
$\mathrm{e}^{-\alpha \mathrm{t}} \cos \omega_{0} \mathrm{t} \cdot \mathrm{u}(\mathrm{t})$	$\frac{\omega_{0}}{(s+\alpha)^{2}+\omega_{0}{ }^{2}}$
$\mathrm{e}^{-\alpha \mathrm{t}} \sin \omega_{0} \mathrm{t} . \mathrm{u}(\mathrm{t})$	

Properties of the Laplace transform are helpful in obtaining Laplace transform of composite functions and in the solution of linear integro-differential equations. Since properties are proved below and other useful properties are presented in Table 2. memorize these properties of Laplace transform.

Table 2: Properties of Laplace Transform

Operation	f(t)	F(s)
Addition	$\mathrm{f}_{1}(\mathrm{t})+\mathrm{f}_{2}(\mathrm{t})$	$\mathrm{F}_{1}(\mathrm{~s})+\mathrm{F}_{2}(\mathrm{~s})$
Scalar multiplication	$\alpha \mathrm{f}(\mathrm{t})$	$\alpha \mathrm{F}(\mathrm{s})$
Time differentiation	$\mathrm{df} / \mathrm{dt}$ or $\mathrm{f}^{\prime}(\mathrm{t})$	$\mathrm{sF}(\mathrm{s})-\mathrm{f}(0)$
	$\mathrm{d}^{2} \mathrm{f} / \mathrm{dt}^{2}$ or $\mathrm{f}^{\prime}(\mathrm{t})$	$\mathrm{s}^{2} \mathrm{~F}(\mathrm{~s})-\mathrm{sf}(0)-\mathrm{f}^{\prime}(0)$
Time integration	$\int_{0}^{t} f(t) d t$	$\frac{1}{s} F(s)$
	$\int_{-\infty}^{t} f(t) d t$	$\frac{1}{s} F(s)+\frac{1}{s} \int_{-\infty}^{0} f(t) d t$
Time shift	$\mathrm{f}\left(\mathrm{t}-\mathrm{t}_{0}\right) \mathrm{u}\left(\mathrm{t}-\mathrm{t}_{0}\right)$	$\mathrm{F}(\mathrm{s}) \mathrm{e}^{-\mathrm{sto}} ; \mathrm{t}_{0} \geq 0$
Frequency Shift	$f(t) e^{\alpha t}$	$\mathrm{F}(\mathrm{s}-\alpha$)
Frequency differentiation	-tf(t)	$\mathrm{dF}(\mathrm{s}) / \mathrm{ds}$
Frequency integration	$\mathrm{f}(\mathrm{t}) / \mathrm{t}$	$\int_{s}^{\infty} F(s) d s$
Scaling	$\mathrm{f}(\alpha \mathrm{t}), \alpha \geq 0$	$\frac{1}{\alpha} F\left(\frac{s}{\alpha}\right)$
Time convolution	$\mathrm{f}_{1}(\mathrm{t}) * \mathrm{f}_{2}(\mathrm{t})$	$\mathrm{F}_{1}(\mathrm{~s}) \mathrm{F}_{2}(\mathrm{~s})$
Frequency convolution	$\mathrm{f}_{1}(\mathrm{t}) \mathrm{f}_{2}(\mathrm{t})$	$\mathrm{F}_{1}(\mathrm{~s}) * \mathrm{~F}_{2}(\mathrm{~s})$
Initial value	f(0)	$\lim _{s \rightarrow \infty} s F(s)$
Final value	$\mathrm{f}(\infty)$	$\lim _{s \rightarrow 0} s F(s)$

Linearity

$$
f_{1}(t) \leftrightarrow F_{1}(s)
$$

and

$$
f_{2}(t) \leftrightarrow F_{2}(s)
$$

Then

$$
\begin{equation*}
a f_{1}(t)+b f_{2}(t) \leftrightarrow a F_{1}(s)+b F_{2}(s) \tag{8}
\end{equation*}
$$

where a and b are constants.

Proof

$$
\begin{align*}
L\left[a f_{1}(t)+b f_{2}(t)\right] & =a \int_{0}^{\infty} f_{1}(t) e^{-s t} d t+b \int_{0}^{\infty} f_{2}(t) e^{-s t} d t \\
& =a F_{1}(s)+b F_{2}(s) \tag{9}
\end{align*}
$$

Frequency Shift

If

$$
f(t) \leftrightarrow F(s)
$$

Then

$$
\begin{equation*}
f(t) e^{\alpha t} \leftrightarrow F(s-\alpha) \tag{10}
\end{equation*}
$$

Proof

$$
\begin{align*}
L\left[f(t) e^{\alpha t}\right] & =\int_{0}^{\infty} f(t) e^{\alpha t} e^{-s t} d t \quad=F(s-\alpha) \tag{11}\\
& =\int_{0}^{\infty} f(t) e^{-(s-a) t} d t
\end{align*}
$$

Time Shift

If

$$
f(t) \leftrightarrow F(s)
$$

Then

$$
\begin{equation*}
f\left(t-t_{0}\right) u\left(t-t_{0}\right) \leftrightarrow F(s) e^{-s t_{0}} \tag{12}
\end{equation*}
$$

Proof

$$
\begin{equation*}
L\left[f\left(t-t_{0}\right) u\left(t-t_{0}\right)\right]=\int_{0}^{\infty} f\left(t-t_{0}\right) u\left(t-t_{0}\right) e^{-s t} d t=\int_{0}^{\infty} f(\lambda) u(\lambda) e^{-s\left(\lambda+t_{0}\right)} d \lambda \tag{13}
\end{equation*}
$$

where $\left(\mathrm{t}-\mathrm{t}_{0}\right)=\lambda$
As $f(\lambda)$ is causal, the lower limit in integral of Eq. 13 can be changed to 0 . Thus

$$
\begin{equation*}
L\left[f\left(t-t_{0}\right) u\left(t-t_{0}\right)\right]=e^{-s t_{0}} \int_{0}^{\infty} f(\lambda) e^{-s \lambda} d \lambda=e^{-s t_{0}} F(s) \tag{14}
\end{equation*}
$$

Time Differentiation

$$
\begin{equation*}
L\left(\frac{d f(t)}{d t}\right) \leftrightarrow s F(s)-f(0) \tag{15}
\end{equation*}
$$

and, in general

$$
\begin{equation*}
L\left(\frac{d^{n} f(t)}{d t}\right) \leftrightarrow s^{n} F(s)-s^{n-1} f^{1}(0)-s^{n-2} f^{1}(0) \ldots-f^{(n-1)}(0) \tag{16}
\end{equation*}
$$

Proof

$$
L\left(\frac{d f(t)}{d t}\right)=\int_{0}^{\infty} \frac{d f(t)}{d t} e^{-s t} d t
$$

Integrating by parts, we get

Existence of $\mathrm{F}(\mathrm{s})$ guarantees $\left.f(t) e^{-s t}\right|_{t=\infty}=0$
Hence Eq. 17 becomes

$$
\begin{equation*}
L\left(\frac{d f(t)}{d t}\right)=s F(s)-f(0) \tag{18}
\end{equation*}
$$

Time Integration

$$
\begin{equation*}
L\left(\int_{0}^{t} f(\tau) d \tau\right) \leftrightarrow \frac{F(s)}{s} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
L\left(\int_{-\infty}^{t} f(\tau) d \tau\right) \leftrightarrow \frac{F(s)}{s}+\frac{\int_{-\infty}^{0} f(\tau) d \tau}{s} \tag{20}
\end{equation*}
$$

Initial Value Theorem

If the function $f(t)$ and its derivative $f^{\prime}(t)$ are Laplace transformable then

$$
\begin{equation*}
f(0)=\lim _{s \rightarrow \infty} s F(s) \tag{21}
\end{equation*}
$$

Proof
We know that $\mathrm{L}\left[\mathrm{f}^{\prime}(\mathrm{t})\right]=\mathrm{sF}(\mathrm{s})-\mathrm{f}(0)$
[from eq. 18)
By taking the limit $\mathrm{s} \rightarrow \infty$ on both sides

$$
\lim _{s \rightarrow \infty} L\left[f^{\prime}(t)\right]=\lim _{s \rightarrow \infty}[s F(s)-f(0)]
$$

or

$$
\lim _{s \rightarrow \infty} \int_{0}^{\infty} f^{\prime}(t) e^{-s t} d t=\lim _{s \rightarrow \infty}[s F(s)-f(0)]
$$

As $s \rightarrow \infty$, the integration on L.H.S. becomes zero.
i.e.

$$
\begin{aligned}
& \int_{0}^{\infty} \lim _{s \rightarrow \infty}\left[f(t) e^{-s t}\right] d t=0 \\
& 0=\lim _{s \rightarrow \infty} s F(s)-f(0)
\end{aligned}
$$

i.e. $\quad f(0)=\lim _{s \rightarrow \infty} s F(s)$

Final Value Theorem

If $f(t)$ and $f^{\prime}(t)$ are Laplace transformable then

$$
\begin{equation*}
f(\infty)=\lim _{s \rightarrow 0} s F(s) \tag{22}
\end{equation*}
$$

Proof

CIRCUIT THEORY

LAPLACE TRANSFORM
AMIE(I) STUDY CIRCLE(REGD.)
We know that $\mathrm{L}[\mathrm{f}(\mathrm{t})]=\mathrm{sF}(\mathrm{s})-\mathrm{f}(0)$
By taking the limit $\mathrm{s} \rightarrow 0$ on both sides, we have

$$
\lim _{s \rightarrow 0} L[f(t)]=\lim _{s \rightarrow 0}[s F(s)-f(0)]
$$

or

$$
\lim _{s \rightarrow 0} \int_{0}^{\infty} f(t) e^{-s t} d t=\lim _{s \rightarrow 0}[s F(s)-f(0)]
$$

$$
\int_{0}^{\infty} f(t) d t=\lim _{s \rightarrow 0}[s F(s)-f(0)]
$$

But

$$
(f(t))_{0}^{\infty}=\lim _{t \rightarrow \infty} f(t)-\lim _{t \rightarrow 0}
$$

Hence

$$
\lim _{t \rightarrow \infty} f(t)-\lim _{t \rightarrow 0}=\lim s F(s)-f(0)
$$

Since $f(0)$ is not a function of S, it gets cancelled from both sides
Hence $\quad \lim _{t \rightarrow \infty} f(t)=\lim _{s \rightarrow 0} s F(s)$
I.e. $\quad f(\infty)=\lim _{s \rightarrow 0} s F(s)$

Time Scaling Theorem

A scale change is performed to a time variable function $f(t)$ by introducing t_{0} in the time domain where t_{0} is a $+v e$ constant. The new function being $f\left(t / t_{0}\right)$.

Now

$$
L\left[f\left(t / t_{0}\right)\right]=\int_{0}^{\infty} f\left(t / t_{0}\right) e^{-s t} d t=t_{0} \int_{0}^{\infty} f\left(t / t_{0}\right) e^{-\left(t_{0} s\right) t t_{0}} d\left(t / t_{0}\right)
$$

Let

$$
t / t_{0}=T
$$

$$
\begin{array}{ll}
\therefore & L\left[f\left(t / t_{0}\right)\right]=L[f(T)]=t_{0} \int_{0}^{\infty} f(T) e^{-t_{0} s T} d T \\
\therefore & L\left[f\left(t / t_{0}\right)\right]=t_{0} F\left(t_{0} s\right)
\end{array}
$$

Complex Translation Theorem

Complex translation theorem states that

Now

$$
e^{-a t} f(t) \leftrightarrow F(s+a)
$$

$$
F(s)=\int_{0}^{\infty} f(t) e^{-a b}=\int_{0}^{\infty} t e^{-a t} d t \text { taking } \mathrm{f}(\mathrm{t})=1
$$

on integration, we have

$$
\begin{aligned}
F(s)= & {\left[\frac{t e^{-a t}}{-a}\right]_{0}^{\infty}-\int_{0}^{\infty} e^{-a t} d t=-\frac{1}{a}\left(t e^{-a t}\right)_{0}^{\infty}-\left(\frac{e^{-a t}}{-a}\right)_{0}^{\infty} } \\
& =\frac{1}{a}(-1)=-\frac{1}{a} \\
& =F(s+a)
\end{aligned}
$$

Find $f(0)$ or $f\left(0^{+}\right)$of the signal whose Laplace transform is

$$
F(s)=\frac{(s+1)}{(s+3)(s+2)}
$$

Solution

From initial value theorem

$$
f(0)=\lim _{s \rightarrow \infty} s F(s)=\lim _{s \rightarrow \infty} \frac{s(s+1)}{(s+3)(s+2)}=1
$$

Example

Find the final value of a continuous signal $x(t)=\left[2+e^{-3 t}\right] u(t)$.

Solution

Laplace transform of signal $x(t)$ can be found as

$$
X(s)=L[x(t)]=L\left[\left(2+e^{-3 t}\right) u(t)\right]
$$

or

$$
\begin{equation*}
X(s)=\int_{-\infty}^{\infty}\left(2+e^{-3 t}\right) u(t) e^{-s t} d t \tag{i}
\end{equation*}
$$

Using the definition of unit step function, we have

$$
u(t)=\left\{\begin{array}{l}
1, t>0 \tag{ii}\\
0, t<t
\end{array}\right.
$$

Substituting the value of $u(t)$ in eq (i)
or

$$
\begin{align*}
& X(s)=\int_{0}^{\infty}\left(2+e^{-3 t}\right) \cdot 1 \cdot e^{-s t} d t=\int_{0}^{\infty}\left[2 e^{-s t}+e^{-(s+3 t)}\right] d t \\
& \text { or } \quad X(s)=2 \int_{0}^{\infty} e^{-s t} d t+\int_{0}^{\infty} e^{-(s+3) t} d t=2\left[\frac{1}{-s} e^{-s t}\right]+\left[\frac{1}{-(s+3)} e^{-(s+3) t}\right]_{0}^{\infty} \\
& \text { or } \quad X(s)=\frac{2}{s}+\frac{1}{s+3}=\frac{2(s+3)+s}{s(s+3)}=\frac{3 s+6}{s(s+3)}=\frac{3(s+2)}{s(s+3)} \tag{iii}
\end{align*}
$$

or

Now

$$
\begin{equation*}
x(\infty)=\lim _{t \rightarrow \infty}[s X(s)] \tag{iv}
\end{equation*}
$$

Substituting the value of $\mathrm{X}(\mathrm{s})$ in equation (iv), we get

$$
x(\infty)=\lim _{s \rightarrow \infty}\left[s \cdot \frac{3(s+2)}{s(s+3)}\right]=\lim _{s \rightarrow \infty}\left[\frac{3(s+2)}{(s+3)}\right]=\frac{3(0+2)}{(0+3)}=2
$$

Hence the final value of signal $x(t)$ is 2 .

CIRCUIT THEORY
 laplace transform
 Example

Find the initial value of the function whose Laplace transform is

$$
V(s)=A \frac{(s+a) \sin \theta+b \cos \theta}{(s+a)^{2}+b^{2}}
$$

Solution

Applying initial value theorem we have

$$
\begin{aligned}
f(0)= & =\lim _{s \rightarrow \infty} s F(s) \\
& =\lim _{s \rightarrow \infty} s A \frac{(s+a) \sin \theta+b \cos \theta}{(s+a)^{2}+b^{2}} \\
& =\lim _{s \rightarrow \infty} A \frac{s(s+a) \sin \theta+b \cos \theta}{(s+a)^{2}+b^{2}}
\end{aligned}
$$

Divide numerator and denominator by s^{2}.

$$
f(0)=\lim _{s \rightarrow \infty} A \frac{\left(1+\frac{a}{s^{2}}\right) \sin \theta+\frac{b}{s^{2}} \cos \theta}{\left(1+\frac{a}{s}\right)^{2}+\left(\frac{b}{s}\right)^{2}}
$$

Applying the $\operatorname{limit}^{2}, f(0)=A \sin \theta$.

Problem

Find the final value of the function whose Laplace transform is

$$
F(s)=\frac{s+6}{s(s+3)}
$$

Answer: 2

Problem

Find the initial value of the continuous signal if its Laplace transform is given as

$$
X(s)=\frac{2 s+1}{s^{2}-1}
$$

Answer: 2

Problem

Find the initial and final values of function if its Laplace is given by
${ }^{2}$ For limit, read any standard mathematics book. In the present case, remember $1 / \infty=0$.

$$
X(s)=\frac{17 s^{3}+7 s^{2}+s+6}{s^{5}+3 s^{4}+4 s^{2}+2 s}
$$

Answer: 0, 3

Problem

Find the initial and final value of the current whose current transform $I(s)$ is given by

$$
I(s)=\frac{0.32}{s\left(s^{2}+2.42 s+0.672\right)}
$$

Answer: 0, 0.477

Time Convolution

$$
\begin{equation*}
\left[f_{1}(t)^{*} f_{2}(t)\right] \leftrightarrow F_{1}(s)_{2}(s) \tag{23}
\end{equation*}
$$

where

$$
\begin{aligned}
& f_{1}(t) \leftrightarrow F_{1}(s) \\
& f_{2}(t) \leftrightarrow F_{2}(s)
\end{aligned}
$$

Proof

$$
\begin{equation*}
\left[f_{1}(t) * f_{2}(t)\right]=\int_{0}^{t} f_{1}(\lambda) f_{2}(t-\lambda) d \lambda \tag{i}
\end{equation*}
$$

As $f_{1}(t)$ and $f_{2}(t)$ are causal, upper limits in Eq. (i) can be changed from t to ∞. This is because $f_{2}(t)=0, t<0$ or $f_{2}(t-\lambda)=0, \lambda>t$. Thus

$$
\begin{equation*}
f_{1}(t)^{*} f_{2}(t)=\int_{0}^{\infty} f_{1}(\lambda) f_{2}(t-\lambda) d \lambda \tag{ii}
\end{equation*}
$$

Taking the Laplace transform

$$
\begin{equation*}
L\left[f_{1}(t)^{*} f_{2}(t)\right]=\int_{0}^{\infty}\left(\int_{0}^{\infty} f_{1}(\lambda) f_{2}(t-\lambda)\right) e^{-s t} d t \tag{iii}
\end{equation*}
$$

Let $\mathrm{t}-\lambda=\eta \rightarrow \mathrm{dt}=\mathrm{d} \eta$. By interchanging order of integrations, we can write Eq.(iii) as

$$
\begin{equation*}
L\left[f_{1}(t) * f_{2}(t)\right]=\int_{0}^{\infty} f_{1}(\lambda)\left(\int_{0}^{\infty} f_{2}(\eta) e^{-s \eta} d \eta\right) e^{-s \lambda} d \lambda \tag{iv}
\end{equation*}
$$

It then follows from Eq. (iv) that

$$
\begin{equation*}
L\left[f_{1}(t) * f_{2}(t)\right]=F_{1}(s) F_{2}(s) \tag{24}
\end{equation*}
$$

These and other properties of the Laplace transform are listed in table 2.

[^1]Evaluate the convolution integral when $x_{1}(t)=e^{-2 t}$ and $x_{2}(t)=2 t$.

Solution

We know that the convolution of two integral functions $x_{1}(t)$ and $x_{2}(t)$ is expressed as

$$
x_{1}(t) \otimes x_{2}(t)=\int_{0}^{t} x_{1}(\tau) x_{2}(t-\tau)
$$

Then we have

$$
x_{1}(t) \otimes x_{2}(t)=\int_{0}^{t} 2 \tau e^{-2(t-\tau)} d \tau=e^{-2 t} \int_{0}^{t} 2 \tau e^{2 \tau} d \tau
$$

Simplifying, we get

$$
x_{1}(t) \otimes x_{2}(t)=2 e^{-2 t}\left[\tau \frac{e^{2 \tau}}{2}-\int 1 \cdot \frac{e^{2 \tau}}{2}\right]_{0}^{t}=2 e^{-2 t}\left[\frac{t e^{2 \tau}}{2}-\frac{e^{2 t}}{4}+\frac{1}{4}\right]
$$

The last equation may be written as

$$
x_{1}(t) \otimes x_{2}(t)=\left[t-\frac{1}{2}+\frac{e^{-2 t}}{2}\right] u(t)
$$

Example

Use the convolution theorem of Laplace transform to find $y(t)=x_{1}(t) \otimes x_{2}(t)$ if $x_{1}(t)=e^{-3 t} u(t)$ and $x_{2}(t)=u(t-2)$.

Solution

We have

$$
x_{1}(t)=e^{-3 t} u(t)
$$

Therefore

$$
X_{1}(s)=\frac{1}{s+3}
$$

Also

$$
x_{2}(t)=u(t-2)
$$

Therefore

$$
X_{2}(s)=\frac{e^{-2 s}}{s}
$$

Hence

$$
X(s)=X_{1}(s) \cdot X\left(s_{2}\right)=\frac{1}{s+3} \cdot \frac{e^{-2 s}}{s}=\frac{e^{-2 s}}{s(s+3)}
$$

Problem

Determine convolution between two functions $f_{1}(t)=2 . u(t)$ and $f_{2}(t)=e^{-3 t} . u(t)$ where $u(t)$ is a unit step function.
$f_{1}(t) * f_{2}(t)=\frac{2}{3}\left[1-e^{-3 t}\right]$
Hint: Use of Eq. 23 of time convolution

$$
\mathrm{f}_{1}(\mathrm{t}) * \mathrm{f}_{2}(\mathrm{t})=\mathrm{F}_{1}(\mathrm{~s}) \mathrm{F}_{2}(\mathrm{~s})
$$

$$
\mathrm{f}_{1}(\mathrm{t})=2 \mathrm{u}(\mathrm{t}) \quad \therefore \mathrm{F}_{1}(\mathrm{~s})=2 / \mathrm{s} \text { from table } 1
$$

$$
\mathrm{f}_{2}(\mathrm{t})=\mathrm{e}^{-3 \mathrm{t}} \mathrm{u}(\mathrm{t}) \quad \therefore \mathrm{F}_{2}(\mathrm{~s})=1 /(\mathrm{s}+3) \text { from table } 1
$$

Example

Find the Laplace transform of $\cos \omega t$ and Sin ωt.

Solution

Adding and subtracting Eq. (i) and (ii), we get

$$
\cos \omega_{0} t \cdot u(t) \leftrightarrow \frac{s}{s^{2}+\omega_{0}{ }^{2}} \quad \quad \text { because } \cos \omega_{0} t=\frac{e^{j \omega_{0} t}+e^{-j \omega_{0} t}}{2}
$$

and

$$
\operatorname{Sin} \omega_{0} t \cdot u(t) \leftrightarrow \frac{\omega_{0}}{s^{2}+\omega_{0}{ }^{2}} \quad \quad \text { because } \operatorname{Sin} \omega_{0} t=\frac{e^{j \omega_{0} t}-e^{-j \omega_{0} t}}{2}
$$

Example

Find the Laplace transform of the following signal

$$
\begin{equation*}
f(t)=\frac{d}{d t}\left[e^{-\alpha t} u(t)\right] \tag{i}
\end{equation*}
$$

Solution

$$
\begin{align*}
& \mathrm{f}(\mathrm{t})=-\alpha \mathrm{e}^{-\alpha \mathrm{t}}(\mathrm{t}) \mathrm{u}(\mathrm{t})+\mathrm{e}^{-\alpha \mathrm{t}} \delta(\mathrm{t}) \tag{ii}\\
& L[f(t)]=-\alpha \int_{0}^{\infty} e^{-\alpha t} e^{-s t} d t+\int_{0}^{\infty} e^{-\alpha t} e^{-s t} \delta(t) d t \tag{iii}\\
& F(s)=\frac{-\alpha}{s+\alpha}+\int_{0}^{\infty} \delta(t) d t \tag{iv}
\end{align*}
$$

$$
\begin{align*}
& \text { As } e^{-\alpha t} u(t) \leftrightarrow \frac{1}{s+\alpha} \quad \quad \quad \text { (from table 1) } \\
& e^{-j \omega_{0} t} u(t) \leftrightarrow \frac{1}{s+j \omega_{0}} \tag{i}\\
& \text { and } \\
& e^{+j \omega_{0} t} u(t) \leftrightarrow \frac{1}{s-j \omega_{0}} \tag{ii}
\end{align*}
$$

$$
\begin{equation*}
=\frac{-\alpha}{s+\alpha}+1=\frac{s}{s+\alpha} \tag{v}
\end{equation*}
$$

Example

Find the Laplace transform of the triangular pulse.

Solution

According to figure, we have

$$
x(t)= \begin{cases}\frac{2}{T} t & \text { for } 0 \leq t \leq \frac{T}{2} \tag{i}\\ 2-\frac{2}{T} t & \text { for } \frac{T}{2} \leq t \leq T\end{cases}
$$

We know that

$$
\begin{equation*}
X(s)=L[x(t)]=\int_{0}^{\infty} x(t) e^{-s t} d t \tag{ii}
\end{equation*}
$$

Substituting the value of $\mathrm{x}(\mathrm{t})$ from equation (i) into equation (ii), we obtain

$$
\begin{aligned}
& X(s)=\int_{0}^{T / 2}\left(\frac{2}{T} t\right) e^{-s t} d t+\int_{T / 2}^{T}\left(2-\frac{2}{T} t\right) e^{-s t} d t \\
& X(s)=\frac{2}{T} \int_{0}^{T / 2} t e^{-s t} d t+2 \int_{T / 2}^{T} e^{-s t} d t-\frac{2}{T} \int_{T / 2}^{T} t \cdot e^{-s t} d t
\end{aligned}
$$

or

$$
X(s)=\frac{2}{T}\left[\left\{\frac{t e^{-s t}}{-s^{2}}\right\}-\left\{\frac{e^{-s t}}{s^{2}}\right\}\right]_{0}^{T / 2}+2\left[\frac{e^{-s t}}{-s}\right]_{T / 2}^{T}-\frac{2}{T}\left[\left\{\frac{t e^{-s t}}{-s}\right\}-\left\{\frac{e^{-s t}}{s^{2}}\right\}\right]_{T / 2}^{T}
$$

Simplifying, we get

$$
X(s)=\frac{2}{T} \frac{1}{s^{2}}-\frac{4}{T} \frac{e^{-s T / 2}}{s^{2}}+\frac{2}{T} \cdot \frac{e^{-s T}}{s^{2}}
$$

Example (AMIE Summer 2012, 6 marks)

Find Laplace transform of $\delta(t-T)+3 \delta(t)+\delta(t-3 T)$

Solution

We know that

A Focused Approach \rightarrow •

$$
L \delta(t)=1
$$

and

$$
L \delta\left(t-t_{1}\right)=e^{-t_{1} s}
$$

Therefore given function becomes

$$
\begin{aligned}
& L(t-T)=e^{-T s} \\
& L[3 \delta(t)]=3
\end{aligned}
$$

and

$$
L(t-3 T)=e^{-3 T s}
$$

Overall Laplace transform is

$$
e^{-T s}+3+e^{-37 s}
$$

Problem

Find the Laplace transform for the following signals:
(a) $\left(1-e^{-3 t}\right) u(t)$
(b) $\delta(t)-\delta(t-5)$
(c) $f(t)= \begin{cases}\sin t & 0<t<\pi \\ 0 & \text { oherwise }\end{cases}$
(d) $\frac{1}{2 a^{3}}(\sin a t-a t \cos a t) u(t)$

Answer
(a) $F(s)=\left(\frac{1}{s}+\frac{1}{(3+s)}\right)$
(b) $F(s)=\left(1-e^{5 s}\right)$
(c) $F(s)=\frac{1}{\left(1+s^{2}\right)}\left(e^{-s \pi}+1\right)$
(d) $F(s)=\frac{1}{\left(s^{2}+a^{2}\right)^{2}}$

LAPLACE TRANSFORM OF PERIODIC FUNCTIONS

Time shift theorem is very useful in determining the transform of periodic time functions. let function $x(t)$ be a casual periodic waveform which satisfies the condition $x(t)=x(t+n T)$ for all $\mathrm{t}>0$ where T is the period of the function and $\mathrm{n}=0,1,2, \ldots \ldots$

Now, we can write

$$
X(s)=\frac{1}{1-e^{-s T}} \int_{0}^{T} x(t) e^{-s t} d t=\frac{X_{1}(s)}{1-e^{-s T}}
$$

A half cycle sine wave function is given by $v(t)=\sin \omega t$. Determine Laplace transform.

Solution

$$
v(t)=\sin \omega t=\sin \frac{2 \pi t}{T} \quad[\omega=2 \pi f=2 \pi / T]
$$

This function will be positive for $0 \leq t \leq T / 2$, T being the time period. Also it is observed that half cycle sine wave has unity amplitude.

Observing following figures, it is noticed that half cycle sine wave shown is actually a combination of two sine waves given by relations

$$
v_{1}=\left[\sin 2 \pi \frac{t}{T}\right] u(t)
$$

and

$$
v_{2}=\left[\sin \frac{2 \pi}{T}\left(t-\frac{T}{2}\right)\right] u\left(t-\frac{T}{2}\right)
$$

when v_{2} is shifted by $\mathrm{T} / 2$ from v_{1}.
Addition of v_{1} and v_{2} graphically gives the desired half cycle of the sine wave

$$
\therefore \quad v(t)=\sin \frac{2 \pi t}{T} u(t)+\sin \frac{2 \pi}{T}\left(t-\frac{T}{2}\right) u\left(t-\frac{T}{2}\right)
$$

Utilising Laplace transform methods

$$
V(s)=\frac{2 \pi / T}{s^{2}+\left(\frac{2 \pi}{T}\right)^{2}}\left[1+e^{-\frac{T}{2} s}\right]
$$

Determine the Laplace transform of the periodic rectangular waveform shown in figure.

Solution

Here the period is 2 T .

$$
L[X(t)]=\frac{1}{1-e^{-2 s T}}\left[\int_{0}^{2 T} x(t) e^{-s t} d t\right]
$$

or

$$
X(s)=\frac{1}{1-e^{-2 s T}}\left[\int_{0}^{T} A e^{-s t} d t+\int_{T}^{2 T}(-A) e^{-s t} d t\right]
$$

or

$$
X(s)=\frac{1}{1-e^{-2 s T}}\left[\frac{-A}{s}\left(e^{-s t}\right)_{0}^{T}+\frac{A}{s}\left(e^{-s t}\right)_{T}^{2 T}\right]
$$

or

$$
X(s)=\frac{1}{1-e^{-2 s T}}\left[\frac{A}{s}\left(e^{-s T}-1\right)+\frac{A}{s}\left(e^{-2 s T}-e^{-s T}\right)\right]
$$

or

$$
\frac{1}{1-e^{-2 s T}}\left[-\frac{A}{S}\left(e^{-s T}-1\right)+\frac{A}{S}\left(e^{-2 s T}-e^{-s T}\right)\right]
$$

or

$$
X(s)=\frac{1}{1-e^{-2 s T}} \cdot \frac{A}{s}\left(1-2 e^{-s T}+e^{-2 s T}\right)
$$

or

$$
X(s)=\frac{1}{1-e^{-2 s T}}\left[\frac{A}{s}\left(1-e^{-s T}\right)^{2}\right]
$$

or

$$
X(s)=\frac{A}{s}\left[\frac{\left(1-e^{-s T}\right)^{2}}{\left(1-e^{-s T}\right)\left(1+e^{-s T}\right)}\right]
$$

or

$$
X(s)=\frac{A}{s} \cdot\left[\frac{\left(1-e^{-s T}\right)}{\left(1+e^{-s T}\right)}\right]=\frac{A}{s} \operatorname{tahh}\left(\frac{s T}{2}\right)
$$

Problem

Obtain the Laplace transform of the given periodic waveform.

Answer: $X(s)=\frac{A}{T s^{2}\left(1-e^{-s T}\right)}\left[1-e^{-s T}-s T e^{-s T}\right]$
Hint: Period is T. For this

$$
x(s)=\frac{1}{1-e^{-s T}}\left[\int_{0}^{T} x(t) e^{-s t} d t\right]
$$

INVERSE LAPLACE TRANSFORM

As per the definition of inverse Laplace transform

$$
\begin{equation*}
f(t)=\frac{1}{2 \pi j} \int_{\sigma-j \omega}^{\sigma+j \omega} F(s) e^{s t} d s \tag{25}
\end{equation*}
$$

Finding the inverse Laplace transform involves complex integration, which is cumbersome. However, using the uniqueness property of the Laplace transform, inverse transform can be found by looking at table 1 . A rational $\mathrm{F}(\mathrm{s})$ can be first broken up into simple factors by partial fractioning. This procedure is demonstrated by some examples.

Example

Obtain the inverse Laplace transform of
(a) $F(s)=\frac{s^{2}+3 s+1}{s(s+1)(s+2)}$
(b) $F(s)=\frac{1}{s^{2}(s+1)}$
(c) $F(s)=\frac{2 s^{2}+6 s+6}{(s+2)\left(s^{2}+2 s+2\right)}$

Solution

(a)

Step 1: Let us first do partial fractioning of $\mathrm{F}(\mathrm{s})$

$$
F(s)=\frac{s^{2}+3 s+1}{s(s+1)(s+2)}=\frac{A}{s}+\frac{B}{s+1}+\frac{C}{s+2}
$$

[This is a case of distinct real poles]

$$
=\frac{S(s+1)(s+2)+B(s)(s+2)+C(s)(s+1)}{s(s+1)(s+2)}
$$

$$
\begin{aligned}
& =\frac{A\left(s^{2}+2 s+2\right)+B\left(s^{2}+2 s\right)+C\left(s^{2}+s\right)}{s(s+1)(s+2)} \\
& =\frac{(A+B+C) s^{2}+(3 A+2 B+C)+2 A}{s(s+1)(s+2)}
\end{aligned}
$$

Comparing coefficients of numerators on both sides

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B}+\mathrm{C}=1 \\
& 3 \mathrm{~A}+2 \mathrm{~B}+\mathrm{C}=3 \\
& 2 \mathrm{~A}=1
\end{aligned}
$$

Solving

$$
\mathrm{A}=0.5, \mathrm{~B}=1 \text { and } \mathrm{C}=-0.5
$$

$$
F(s)=\frac{s^{2}+3 s+1}{s(s+1)(s+2)}=\frac{0.5}{s}+\frac{1}{s+1}-\frac{0.5}{s+2}
$$

Step 2: Using table (1), we get

$$
f(t)=0.5 u(t)+e^{-t} u(t)-\frac{1}{2} e^{-2 t} u(t)
$$

(b)

Step 1: Let us first do partial fractioning of $\mathrm{F}(\mathrm{s})$

$$
\begin{aligned}
F(s)= & \frac{1}{s^{2}(s+1)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{(s+1)} \quad \text { [This is a case of repeated poles] } \\
& =\frac{A s(s+1)+B(s+1)+C\left(s^{2}\right)}{s^{2}(s+1)} \\
& =\frac{A\left(s^{2}+s\right)+B(s+1)+C s^{2}}{s^{2}(s+1)} \\
& =\frac{(A+C) s^{2}+(A+B) s+B}{s^{2}(s+1)}
\end{aligned}
$$

Comparing coefficients of numerators on both sides

$$
\begin{aligned}
& B=1 \\
& A+B=0 \\
& A+C=0
\end{aligned}
$$

Solving

$$
B=1
$$

$$
\mathrm{A}=-1
$$

$$
C=1
$$

$$
\therefore \quad F(s)=\frac{1}{s^{2}(s+1)}=\frac{-1}{s}+\frac{1}{s^{2}}+\frac{1}{s+1}
$$

Step 2: From table (1), we get

$$
f(t)=\left(t-1+e^{-t}\right) u(t)
$$

(c)

Step 1: Partial Fractioning

$$
\frac{2 s^{2}+6 s+6}{(s+2)\left(s^{2}+2 s+s\right)}=\frac{A}{s+2}+\frac{B s+C}{s^{2}+2 s+2}=\frac{A\left(s^{2}+2 s+2\right)+(B s+C)(s+2)}{(s+2)\left(s^{2}+2 s+2\right)}
$$

Comparing coefficients of numerators on both sides

$$
\begin{aligned}
& \mathrm{A}=1 \\
& \mathrm{~B}=1 \\
& \mathrm{C}=2
\end{aligned}
$$

Hence $F(s)=\frac{1}{s+2}+\frac{s+2}{s^{2}+2 s+2}=\frac{1}{s+2}+\frac{s+1}{(s+1)^{2}+1}+\frac{1}{(s+1)^{2}+1}$
Step 2: From table (1), We get

$$
f(t)=\left(e^{-2 t}+e^{-t} \cos t+e^{-t} \sin t\right) u(t)
$$

Example

Find inverse Laplace transform of

$$
\frac{3 s^{2}+s+1}{2 s^{2}+3 s}
$$

Solution

Here powers of numerator and denominator are same. Hence first divide numerator by denominator. We get

$$
F(s)=1+\frac{1-2 s}{2 s\left(s+\frac{3}{2}\right)}
$$

Now let us first partial fraction $\frac{1-2 s}{2 s(s+3 / 2)}$ by using method already discussed in above examples.

We find $\quad \frac{1-2 s}{2 s(s+3 / 2)}=\frac{1}{3 s}-\frac{4}{3(s+3 / 2)}$
$\therefore \quad F(s)=1+\frac{1}{3 s}-\frac{4}{3(s+3 / 2)}$
\therefore Inverse of $\mathrm{F}(\mathrm{s})=\delta(t)+\frac{1}{3} u(t)-\frac{4}{3} e^{-(3 / 2) t}$

Problem

Find the inverse Laplace transform of
(a) $\frac{1}{(s+1)^{2}}$
(b) $\frac{s+4}{s^{2}+10 s+24}$
(c) $\frac{2 s+3}{(s+1)\left(s^{2}+4 s+5\right)}$

Answer

(a) $t e^{-2 t} u(t)$
(b) $e^{-6 t} u(t)$
(c) $0.5\left[(3 \sin t-\cos t) e^{-2 t}+e^{-t}\right] u(t)$

APPLICATIONS OF LAPLACE TRANSFORMATION IN NETWORK ANALYSIS

Step Response of Series R-L Circuit

In the series RL circuit shown in figure, let us consider that the switch S is closed at time $t=$ 0 .

For the step response, the input excitation is $\mathrm{x}(\mathrm{t})=\mathrm{V}_{0} \cdot \mathrm{u}(\mathrm{t})$. Applying Kirchoff's voltage law to the circuit, we get following diff equation:

$$
L \frac{d i(t)}{d t}+R i(t)=V_{0} \cdot u(t)
$$

Taking Laplace transform, the last equation becomes

$$
L[s I(s)-i(0+)]+R I(s)=\frac{V_{0}}{s}
$$

Because of presence of inductance $\mathrm{L}, \mathrm{i}(0+)=0$, i.e the current through an inductor can not change instantaneously due to conservation of flux linkages.

CIRCUIT THEORY

laplace transform
Therefore $\quad I(s)=\frac{V_{0}}{L} \cdot \frac{1}{s\left(s-\frac{R}{L}\right)}=\frac{V_{0}}{L} \cdot \frac{L}{R}\left[\frac{1}{s}-\frac{1}{s+(R / L)}\right]=\frac{V_{0}}{R}\left[\frac{1}{s}-\frac{1}{s+R / L}\right]$
Taking inverse Laplace transform

$$
i(t)=\frac{V_{0}}{R}\left[1-e^{R / L}\right]
$$

Step Response of Series R-C Circuit

For the given circuit, integral-differential eq. is

$$
\frac{1}{C} \int_{-\infty}^{t} i(t) d t-\operatorname{Ri}(t)=V_{0} u(t)
$$

This can be written as

$$
\frac{1}{C} \int_{0}^{t} i(t) d t+\frac{1}{C} \int_{-\infty}^{0} i(t) d t+R i(t)=V_{0} u(t)
$$

Taking Laplace transform, the last equation becomes

$$
\begin{array}{ll}
& \frac{1}{C}\left[\frac{I(s)}{s}\right]+\frac{1}{C} L\left[q\left(0^{+}\right)\right]+R I(s)=\frac{V_{0}}{s} \\
\text { or } & \frac{1}{C}\left[\frac{I(s)}{s}+\frac{q\left(0^{+}\right)}{s}\right]+R I(s)=\frac{V_{0}}{s}
\end{array}
$$

Now $q\left(0^{+}\right)$is the charge on the capacitor C at time $\mathrm{t}=0^{+}$. If the capacitor is initially uncharged, then $\mathrm{q}\left(0^{+}\right)=0$.

Hence

$$
I(s)\left[\frac{1}{C s}+R\right]=\frac{V_{0}}{s}
$$

or

$$
I(s)=\frac{V_{0} / R}{s+\frac{1}{R C}}
$$

Therefore

$$
i(t)=\frac{V_{0}}{R} e^{t / R C}
$$

Following figure shows the series RLC circuit.
Integral Diff equation is

$$
\begin{equation*}
L \frac{d i(t)}{d t}+R i(t)+\frac{1}{C} \int_{-\infty}^{t} i(t) d t=V_{0} u(t) \tag{i}
\end{equation*}
$$

Eq. (i) can be written as

$$
L \frac{d i(t)}{d t} R i(t)+\frac{1}{C} \int_{-\infty}^{t} i(t) d t+\frac{1}{C} \int_{0}^{t} i(t) d t
$$

Taking Laplace transform, the last equation would become
or

$$
\begin{aligned}
& L\left(s I(s)-i\left(0^{+}\right)\right]+R I(s)+\frac{1}{C} L\left[q\left(0^{+}\right)\right]+\frac{1}{C} \cdot \frac{I(s)}{s}=\frac{V_{0}}{s} \\
& L\left[s I(s)-i\left(0^{+}\right)\right]+R I(s)+\frac{1}{C} \frac{q\left(0^{+}\right)}{s}+\frac{1}{C} \cdot \frac{I(s)}{s}=\frac{V_{0}}{s}
\end{aligned}
$$

Now due to the presence of indicator L , we have $\mathrm{i}\left(0^{+}\right)$. Also, $\mathrm{q}\left(0^{+}\right)$is the charge on the capacitor C at $\mathrm{t}=0^{+}$. If the capacitor is initially uncharged, then $\mathrm{q}\left(0^{+}\right)=0$. Putting these two initial conditions in last equation, we get
or

$$
L s I(s)+R I(s)+\frac{I(s)}{C_{s}}=\frac{V_{0}}{s}
$$

$$
I(s)\left[L s+R+\frac{1}{C s}\right]=\frac{V_{0}}{s}=\frac{V_{0}}{L s^{2}+R s+\frac{1}{C}}=\frac{V_{0}}{l\left(s-p_{1}\right)\left(s-p_{2}\right)}
$$

where

$$
p_{1}, p_{2}=\frac{-R}{2 L} \pm \frac{1}{2 L} \sqrt{R^{2}-4 \frac{L}{C}}
$$

Hence

$$
i(t)=\frac{V_{0} / L}{\left(p_{1}-p_{2}\right)}\left[e^{p_{1} t}-e^{p_{2} t}\right]
$$

Step Response of Series RLC Circuit

Following figure shows the circuit of parallel RLC circuit.

Let the switch S be opened at time $t=0$, thus connecting the d.c. current source I_{0} to the circuit.

Applying Kirchoff's current law to the circuit, we get the following integro-differential equation

$$
\begin{equation*}
C \frac{d V}{d t}+G V+\frac{1}{L} \int_{-\infty}^{t} V d t=I_{0} u(t) \tag{i}
\end{equation*}
$$

The last equation can be written as under

$$
C \frac{d V}{d t}+G V+\frac{1}{L} \int_{-\infty}^{0} V d t+\frac{1}{L} \int_{0}^{t} V d t=I_{0} u(t)
$$

Taking Laplace transform, the last equation becomes

$$
C\left[s V(s)-V\left(0^{+}\right)+G V(s)+\frac{1}{L}\left[\phi\left(0^{+}\right)\right]+\frac{1}{L} \cdot \frac{V(s)}{s}=\frac{I_{0}}{s}\right.
$$

where $\phi\left(0^{+}\right)$is the flux linkage and equals to $\operatorname{Li}\left(0^{+}\right)$.
Now, the initial conditions are inserted.
Due to presence of capacitor $\mathrm{C}, V\left(0^{+}\right)=0$, since the voltage across a capacitor change instantaneously. Also, the current in the inductor L during the time interval $-\infty$ to 0 . hence $\phi\left(0^{+}\right)=0$.

Example

In the circuit of given Figure, the switch S has been open for long time and is closed at $t=0$. For $e(t)=3 u(t)$, find $i(t), t>0$.

Solution

Applying the KVL to the circuit after S is closed.

$$
\begin{equation*}
e(t)=3 u(t)=2 i(t)+2 \frac{d i(t)}{d t} \tag{i}
\end{equation*}
$$

Taking the Laplace transform of Eq. (i), we get

$$
\begin{equation*}
\frac{3}{s}=2 I(s)+2\{s I(s)-i(0)\} \tag{ii}
\end{equation*}
$$

GIRCUIT THEORY LAPLACE TRANSFORM

where $\mathrm{i}(0)=$ initial condition.
Before the switch is closed the circuit has reached steady state with inductance acting as a short circuit. Therefore,

$$
\mathrm{i}(0)=\frac{3}{(1+2)}=1 \mathrm{~A}
$$

From Eq. (ii), we now get

$$
3=2 \mathrm{~s}\left(\mathrm{I}(\mathrm{~s})+2 \mathrm{~s}^{2} \mathrm{I}(\mathrm{~s})-\mathrm{s}\right.
$$

Rearranging we get

$$
\begin{equation*}
I(s)=\frac{s+3}{2 s(s+1)} \tag{iii}
\end{equation*}
$$

Partial fractioning of Eq. (iii) yields the following result.

$$
\begin{equation*}
I(s)=\frac{1}{2}\left(\frac{3}{s}-\frac{2}{s+1}\right) \tag{iv}
\end{equation*}
$$

Taking the inverse Laplace transform of Eq. (iv), we get

$$
\mathrm{i}(\mathrm{t})=\left(1.5-\mathrm{e}^{-\mathrm{t}}\right) \mathrm{u}(\mathrm{t})
$$

Example

In the circuit of figure the switch S is closed at $t=0$. Determine the currents $i_{1}(t)$ and $i_{2}(t)$.

Solution

Applying the KVL to loops I and II

$$
\begin{align*}
& 8 i_{1}(t)+2 \frac{d i_{1}(t)}{d t}+20\left(i_{1}(t)-i_{2}(t)\right)=100 \tag{i}\\
& 10 i_{2}(t)+2 \frac{d i_{2}(t)}{d t}+20\left(i_{2}(t)-i_{1}(t)\right)=0 \tag{ii}
\end{align*}
$$

Taking the Laplace transform of Eqs. (i) and (ii), we get

$$
\begin{align*}
& 8 I_{1}(s)+2 s I_{1}(s)-2 i_{1}(0)+20\left(I_{1}(s)-I_{2}(s)\right)=\frac{100}{s} \tag{iii}\\
& 20\left(I_{2}(s)-I_{1}(s)\right)+10 I_{1}(s)+2 s I_{2}(s)=0 \tag{iv}
\end{align*}
$$

CIRCUIT THEORY laplace transform

Before the switch is closed the left part of the circuit has reached steady state within the inductance acting as a short circuit. Therefore,

$$
\mathrm{i}_{1}(0)=\frac{100}{28}=3.57 \mathrm{~A}
$$

Substituting this value in Eq.(iii) and rearranging both eq. (iii) and (iv), we have

$$
\begin{align*}
& (2 s+28) I_{1}(s)-20 I_{2}(s)=\frac{100}{s}+7.14 \tag{v}\\
& -20 I_{2}(s)+(2 s+30) I_{2}(s)=0 \tag{vi}
\end{align*}
$$

From Eq. (vi), we have

$$
\begin{equation*}
I_{1}(s)=\frac{s+15}{10} I_{2}(s) \tag{vii}
\end{equation*}
$$

Substituting this in Eq. (v), solving for $\mathrm{I}_{2}(\mathrm{~s})$ and factorizing its denominator, we get

$$
\begin{equation*}
I_{2}(s)=\frac{5(100+7.14 s)}{s(s+24.5)(s+4.5)} \tag{viii}
\end{equation*}
$$

By partial fractioning, we can write

$$
\begin{equation*}
I_{2}(s)=\frac{4.54}{s}-\frac{0.77}{s+24.5}-\frac{3.77}{s+4.5} \tag{ix}
\end{equation*}
$$

Taking the Laplace inverse on both sides

$$
\begin{equation*}
i_{2}(t)=\left(4.54-0.77 e^{-24.5 t}-3.77 e^{-4.5 t}\right) u(t) \tag{x}
\end{equation*}
$$

Now

$$
\begin{equation*}
I_{1}(s)=\frac{(s+15)(7.14 s+100)}{2 s(s+4.5)(s+24.5)} \tag{xi}
\end{equation*}
$$

or

$$
\begin{equation*}
I_{1}(s)=\frac{6.8}{s}+\frac{0.73}{s+24.5}-\frac{3.96}{s+4.5} \tag{xii}
\end{equation*}
$$

Taking the inverse Laplace transform, we get

$$
\begin{equation*}
i_{1}(t)=\left(6.8-3.96 e^{-4.5 t}-0.77 e^{-24.5 t}\right) u(t) \tag{xiii}
\end{equation*}
$$

Problem

In the series RL circuit shown in figure, determine current $i(t)$.

Answer: $i(t)=\frac{V_{0}}{L}$ te ${ }^{-\alpha t}$ where $\alpha=R / L$.

In the circuit of Figure, the switch S has been open for a long time and is closed at $t=0$. Find $i(t), t>0$.

Answer: $i(t)=\left(5-2.5 e^{-10 t}\right) u(t)$

Example

In a series RLC network $R=0.5 \Omega, L=1 \mathrm{H}$ and $C=1 \mathrm{~F}$. If the initial voltage on the capacitor is 4 V , find $i(t)$ following switching of a voltage $10 u(t)$ into the circuit. Assume zero initial condition for the inductor and the polarity of charge on the capacitor as shown in figure.

Solution

Since $R=1 / 2 \Omega ; L=1 H, C=1 F$

$$
\begin{array}{ll}
\therefore & Z(s)=R+L s+\frac{1}{C s}=\frac{1}{2}+s+\frac{1}{s}=\frac{s^{2}+s+2}{2 s} \\
\therefore & Y(s)=\frac{2 s}{s^{2}+s+2}=\frac{2 s}{(s+0.25-j 0.968)(s+0.25+j 0.968)}
\end{array}
$$

Here $\mathrm{Z}(\mathrm{s})$ is impedance and $\mathrm{Y}(\mathrm{s})$ is admittance in s domain.
Now

$$
I(s)=Y(s) V(s)
$$

or

$$
\begin{aligned}
i(t)= & Y(t) V(t) \\
& =\left[K_{1} e^{[-0.25+j 0.968] t}+K_{2} e^{[-0.25-j 0.968 t}\right] 10 u(t) \\
& =10 K e^{-0.25 t} \cos [0.968 t+\phi] u(t)
\end{aligned}
$$

Due to zero initial condition of the inductor

	$i(0-)=i(0+)=0$
\therefore	$0=10 K \cos \phi$
or	$\phi= \pm \pi / 2($ giving also $\mathrm{K}=0)$

Also,

$$
\left.\frac{d i}{d t}\right|_{t=0+} \text { (i.e. drop across the inductor) }=10-4=6 \mathrm{~V}
$$

[Because At $\mathrm{t}=0+$, drop across the inductor is the difference of supply voltage and initial voltage on the capacitor]
or

$$
6=10 K[-0.25 \cos \phi-0.968 \sin \phi]=10 \mathrm{~K}\left[-0.25 \cos \frac{\pi}{2}-0.968 \sin \left(-\frac{\pi}{2}\right)\right]
$$

Solving $\quad K=0.62$
Hence

$$
i(t)=0.62 \times 10 e^{-0.25 t} \cos [0.968 t+(-\pi / 2)] u(t)
$$

$$
\therefore \quad i(t)=6.2 e^{-0.25 t} \sin (0.968 t) u(t)
$$

Example (AMIE W12, 10 marks)

A series $R L$ circuit is energized by a d.c. voltage of 1.0 V by switching it at $t=0$. If $R=1.0$ $\Omega, L=1.0 \mathrm{H}$, find the expression of the current using convolution integral.

Solution

See following circuit.

Here

$$
Z(s)=R+s L \quad \text { (Assuming zero initial condition) }
$$

$$
\therefore \quad y(s)=\frac{1}{R+s L}=\frac{1}{L} \cdot \frac{1}{s+R / L}
$$

Taking the inverse transform

$$
y(t)=\frac{1}{L} e^{(-R / L) t}
$$

Also, in Laplace domain, $\mathrm{I}(\mathrm{s})=\mathrm{Y}(\mathrm{s}) . \mathrm{V}(\mathrm{s})$ or using convolution integral
or

$$
i(t)=y(t)^{*} v(t)
$$

$$
i(t)=\int_{0}^{t} y(t-\tau) v(\tau) d \tau=\frac{1}{L} \int_{0}^{t} e^{(-R / L)(t-\tau)} 1 d \tau
$$

$$
=\frac{1}{R}\left(1-e^{(-R / L) t}\right)
$$

However $\mathrm{R}=1 \Omega$ and $\mathrm{L}=1 \mathrm{H}$

$$
\therefore \quad i(t)=1-e^{-t}
$$

Example

In a series LC circuit, the supply voltage being $v=V_{\max } \cos (t)$, find $i(t)$ at $t=0+$ following switching at $t=0$ with zero initial conditions. Assume $L=1 H ; C=1 \mathrm{~F}$.

Solution

See following figure.

Application KVL at $\mathrm{t}=0+$ in Laplace domain
or

$$
I(s)\left[L s+\frac{1}{C s}\right]=L v+\frac{s V_{m}}{s^{2}+1}
$$

$$
I(s)\left[s+\frac{1}{s}\right]=\frac{s V_{m}}{s^{2}+1}
$$

or

$$
I(s)=\frac{s V_{m}}{\left(s^{2}+1\right)\left(s+\frac{1}{s}\right)}=\frac{V_{m} s^{2}}{\left(s^{2}+1\right)\left(s^{2}+1\right)}=\frac{s^{2} V_{m}}{\left(s^{2}+1\right)^{2}}
$$

Before, we find the partial fraction expression, the roots are $+\mathrm{j},-\mathrm{j},+\mathrm{j}$ and -j .

$$
\begin{array}{ll}
\therefore \quad & I(s)= \\
& =\frac{s^{2} V_{m}}{(s+j)(s-j)(s+j)(s-j)}=\frac{s_{1}}{(s-j)^{2}}+\frac{K_{1} *}{(s+j)^{2}}+\frac{K_{2}}{(s-j)}+\frac{K_{2} *}{s+j} \\
\therefore \quad & K_{1}=\left.i(s)(s-j)^{2}\right|_{s=j}=\left.\frac{s^{2} V_{m}}{(s+j)^{2}}\right|_{s=j}=\frac{j^{2} V_{m}}{(2 j)^{2}}=\frac{V_{m}}{4} \\
& K_{2}=\left|\frac{1}{(2-1)!} \frac{d}{d s}(s-j)^{2} I(s)\right|_{s=j}=\left|\frac{(s+j)^{2} V_{m} 2 s-V_{m} s^{2} x 2(s+j)}{(s+j)^{4}}\right|_{s=j}=-j \frac{V_{m}}{4}
\end{array}
$$

$\therefore \quad K_{1} *=\frac{V_{m}}{4} ; K_{2} *=j \frac{V_{m}}{4}$
Thus

$$
\begin{aligned}
I(s)= & \frac{V_{m} / 4}{(s-j)^{2}}+\frac{V_{m} / 4}{(s+j)^{2}}+\frac{-j V_{m} / 4}{s-j}+\frac{j B V_{m}}{s+j} \\
& =\frac{V_{m}}{4}\left[\frac{1}{(s-j)^{2}}+\frac{1}{(s+j)^{2}}-\frac{j}{s-j}+\frac{j}{s+j}\right]
\end{aligned}
$$

Inverse of Laplace transform gives

$$
\begin{aligned}
I(t)= & \frac{V_{m}}{4}\left[t e^{j t}+t e^{-j t}-j e^{i t}+j e^{-j t}\right] \\
& =\frac{V_{m}}{4}\left[2 t \cdot \frac{e^{j t}+e^{-j t}}{2}-j(2 j) \frac{e^{j t}-e^{-j t}}{(2 j)}\right] \\
& =\frac{V_{m}}{2}[t \cos t+\sin t]
\end{aligned}
$$

CIRCUIT THEORY AND CONTROL

Q.1. (AMIE W05, S07, 08, 10 marks): State and explain (prove) the following: (i) Initial value theorem (ii) final value theorem (ii) Convolution integral.
Q.2. (AMIE W11, 12 marks): State the initial and final value theorems. Compute the Laplace transform of the function

$$
f(t)=\left(1+3 e^{-2 t}+4 t e^{-2 t}\right) u(t)
$$

Verify the initial value theorem for this function.
Answer: $F(S)=\frac{1}{s}+\frac{3}{s+2}+\frac{4}{(s+2)^{2}} ;$ LHS $=$ RHS $=4$
Q.3. (AMIE S12, 6 marks): State the time scaling property of Laplace transform. Prove it.
Q.4. (AMIE W06, 8 marks): Evaluate the inverse Laplace transform of $\left[\frac{1}{(s+1)} \cdot \frac{1}{(s+2)}\right]$

Answer: $\frac{e^{-t}}{3}\left(e^{3 t}-1\right)$
Q.5. (AMIE W11, 8 marks): Find the inverse transformation of the function

$$
F(s)=\frac{s^{2}+6 s+8}{s^{3}+4 s^{2}+3 s}
$$

Answer: $f(t)=\frac{8}{3}-\frac{3}{2} e^{-t}-\frac{1}{6} e^{-3 t}$
Q.6. (AMIE S07, 4 marks): Determine the final value of $f(t)$, if

$$
F(s)=\frac{s}{\left(s^{2}+5 s+3\right)(s+1)}
$$

Answer: 0
Q.7. (AMIE S07, 6 marks): Determine

$$
L^{-1} \frac{1}{s^{2}+4 s+3}
$$

using convolution theorem.
Answer: $\frac{e^{-t}}{4}\left(e^{4 t}-1\right)$
Q.8. (AMIE S08, 8 marks): Find the Laplace transform of the following functions:
(i) $t u(t)$ (unit ramp function)
(ii) $t e^{-a t} u(t)$
(iii) $\sinh (b t) u(t)$

Answer: (i) $1 / s^{2}$, (ii) $1 /(s+a)^{2}$ (iii) $b /\left(s^{2}-b^{2}\right)$
Q.9. (AMIE S08, 7 marks): Obtain the inverse Laplace transform of the following:

$$
\frac{12(s+2)}{s\left(s^{2}+4 s+8\right)}
$$

Answer: $3\left[1+3 e^{-2 t} \cos 2 t\right]$
Q.10. (AMIE S13, 5 marks): Current I(S) in a network is given by

$$
I(\mathrm{~S})=\frac{2 S+3}{S^{2}+3 S}
$$

Find $i(t)$ the current at any time " t ".
Answer: $i(t)=u(t)+e^{-3 t}$
Q.11. (AMIE W08, 7 marks): Find the inverse Laplace transform of the following:

$$
X(s)=\frac{1}{\left(s^{2}+5^{2}\right)^{2}}
$$

Answer: $f(t)=\frac{1}{250}[\sin 5 t-5 t \cos 5 t]$
Q.12. (AMIE S10, 5 marks): Find the inverse Laplace transform for

$$
F(s)=(7 s+2) /\left(s^{3}+3 s^{2}+2 s\right)
$$

Answer: $f(t)=u(t)+5 e^{-t}-6 e^{-2 t}$
Q.13. (AMIE S09, 2 marks): Derive the Laplace transform of the function $f(t)=t$.

Answer: 1/s ${ }^{2}$
Q.14. (AMIE W11, $\mathbf{5}$ marks): Only one half cycle (starting $t=0$) is present for a sinusoidal wave of amplitude 2 V and time period 0.02 s . Find the time domain equation and calculate the Laplace transform for this half cycle.
Q.15. (AMIE W09, 8 marks): Determine the Laplace transform of the following periodic function.

Answer: $\frac{5}{s}-\frac{10}{\pi}\left[\frac{\omega}{s^{2}+\omega^{2}}+\frac{1}{2} \cdot \frac{2 \omega}{\left(s^{2}+4 \omega^{2}\right)}+\frac{1}{3} \cdot \frac{3 \omega}{\left(s^{2}+9 \omega^{2}\right)}+\ldots.\right]$
Q.16. (AMIE S10, 7 marks): For the given signal, find the Laplace transform.

Answer: $f(t)=u(t)+5 e^{-t}-6 e^{-2 t}$
Q.17. (AMIE S09, 6 marks): In the given network, switch K is opened at time $t=0$, the steady state having established previously. With switch K open, draw the transform (s-domain) network representing all elements and all initial conditions. Write the transform equation for current in the loop. From that expression, also find the current $\mathrm{i}(\mathrm{t})$ in the loop.

Answer: $2 e^{-2 t}(1-2 t)$
Q.18. (AMIE S05, 6 marks): In the network shown in given figure, the switch is kept in position 1 for a long time and then moved to position 2 at $t=0$. Determine the current expression $i(t)$ using Laplace transform.

Answer: $i(t)=4-2 e^{-2500 t}$
Q.19. (AMIE S06, 8 marks): Find the particular solution of the circuit shown below.

Answer: $i(t)=\frac{V}{R}\left(1-e^{-\frac{R}{L} t}\right)$
Q.20. (AMIE S12, 8 marks): A step voltage $\mathrm{V}(\mathrm{t})=100 \mathrm{u}(\mathrm{t})$ is applied to a series RLC circuit with $\mathrm{L}=10 \mathrm{H}, \mathrm{R}$ $=2 \Omega$ and $\mathrm{C}=5 \mathrm{~F}$. The initial current in the circuit is zero but there is an initial voltage of 50 V on the capacitance in a direction which opposes the applied source. Find the expression for the current in the circuit.

Answer: $i(t)=(0.5-j 0.33) e^{(0.2+j 0.3) t}+(0.5+j 0.33) e^{-(0.2+j 0.3) t}$

CIRCUIT THEORY LAPLACE TRANSFORM

Q.21. (AMIE W12, 10 marks): The circuit shown in figure is initially under steady state condition with switch S closed. Switch S is opened at $t=0$. Find the voltage across the inductance, L, as function of " t ". Use Laplace transform method.

CIRCUIT AND FIELD THEORY

Q.22. (AMIE W07, 08, S05, 09, 10 marks): Write short notes on Initial and Final value theorems.
Q.23. (AMIE S08, 12, 10 marks): State and prove (i) convolution theorem (ii) complex translation theorem of Laplace transform.
Q.24. (AMIE S10, 6 marks): What is convolution? State and prove convolution theorem.
Q.25. (AMIE W11, 10 marks): Establish analytically the concept of convolution using Laplace transformation of two functions.
Q.26. (AMIE W08, $\mathbf{3}$ marks): A function in Laplace domain is given by

$$
F(s)=\frac{2}{s}-\frac{1}{s+3}
$$

Obtain its value by final value theorem in time domain.
Answer: 2
Q.27. (AMIE S05, 6 marks): Find the value of $i(0)$ using the initial value theorem for the Laplace transform given below:

$$
I(s)=\frac{2 s+3}{(s+1)(s+3)}
$$

Obtain its inverse form.
Answer: 2
Q.28. (AMIE W12, 10 marks): State and briefly explain the initial and final value theorem in Laplace domain. A function in Laplace domain is given by

$$
F(s)=\frac{2(s+4)}{(s+3)(s+8)}
$$

Find the initial and final values.
Answer: 1, 0
Q.29. (AMIE W08, 5 marks): If $f_{1}(t)=2 u(t)$ and $f_{2}(t)=e^{-3 t} u(t)$, determine the convolution between $\mathrm{f}_{1}(\mathrm{t})$ and $\mathrm{f}_{2}(\mathrm{t})$.
Q.30. (AMIE W08, 7 marks): A 10 V step voltage is applied across a $R C$ series circuit at $t=0$. Find $i(t)$ at $t=$ $0+$ and obtain the value of $(\mathrm{di} / \mathrm{dt})_{t=0}$ assuming $\mathrm{R}=100 \Omega$ and $\mathrm{C}=100 \mu \mathrm{~F}$.

Answer: 0
Q.31. (AMIE W09, 8 marks): In a Laplace domain, a function is given by

$$
F(S)=M\left[\frac{(s+\alpha) \sin \theta}{(s+\alpha)^{2}+\beta^{2}}+\frac{\beta \cos \theta}{(s+\alpha)^{2}+\beta^{2}}\right]
$$

Show by initial value theorem

$$
\lim _{t \rightarrow 0} f(t)=M \sin \theta
$$

Q.32. (AMIE S05, 4 marks): A pulse voltage of width 2 seconds and magnitude 10 volts is applied at time $t=0$ to a series R-L circuit consisting of resistance $\mathrm{R}=4 \Omega$ and inductor $\mathrm{L}=2$ Henry. Find the current $\mathrm{i}(\mathrm{t})$ by using Laplace transformation method. Assume zero current through the inductor L before application of the voltage pulse.

Answer: $\left(\frac{5}{2}-e^{-5 t}\right) u(t)-5\left(1-e^{-(t-2)}\right)^{u(t-2)}$
Q.33. (AMIE S10, 8 marks): A step voltage of $100 \mathrm{tu}(\mathrm{t})$ volts is applied across a series RC circuit where $\mathrm{R}=5$ K -ohm and $\mathrm{C}=4 \mu \mathrm{~F}$. Find the voltage drop across the resistor R and show that it is approximately equal to 2 V .
Q.34. (AMIE S09, $\mathbf{5}$ marks): A function in Laplace domain is given by

$$
I(s)=\frac{s+1}{s\left(s^{2}+4 s+4\right)}
$$

Obtain its inverse transform.
Answer: $i(t)=\frac{1}{4} u(t)+\frac{1}{2} t e^{-2 t}+\frac{1}{2} e^{-2 t}$
Q.35. (AMIE W09, S10, 7 marks): Obtain inverse Laplace transform of I(s) when

$$
I(s)=\frac{250}{\left(s^{2}+625\right)(s+2)}
$$

Answer: $i(t)=0.4 e^{-2 t}-\frac{5}{(25+j 2)} e^{-j 25 t}-\frac{5}{(25-j 2)} e^{j 25 t}$
Q.36. (AMIE S08, 12, 12 marks): Find the inverse Laplace transform of the following
(i) $F(s)=\frac{s+1}{s^{3}+s^{2}-6 s}$
(ii) $F(s)=\frac{s+2}{s^{5}-2 s^{4}+s^{3}}$
(i) Answer: $f(t)=-\frac{1}{6}+\frac{3}{10} e^{2 t}-\frac{2}{15} e^{-3 t}$
(ii) $f(t)=8+5 t+t^{2}-8 e^{t}+t e^{t}$
Q.37. (AMIE S09, $\mathbf{5}$ marks): A pulse waveform is shown in following figure. Obtain its Laplace transform.

Answer: 20

CIRCUIT THEORY LaPLACE TRANSFORM

A Focused Approach \gg
Q.38. (AMIE S05, 8 marks): Find the current $i(t)$ in a series $R C$ circuit consisting $R=2 \Omega$ and $C=1 / 4$ farad when each of the following driving force voltage is applied:
(i) ramp voltage $2 \mathrm{r}(\mathrm{t}-3)$
(ii) step voltage $2 u(t-3)$

Answer: (i) $i(t)=\frac{1}{2}\left[u(t-3)-e^{-2(t-3)} \cdot u(t-3)\right]$ (ii) $i(t)=e^{-2(t-3)} \cdot u(t-3)$
Q.39. (AMIE W05, 8 marks): Find the current response $i(t)$ when a step voltage is applied by closing the switch k. Assume Q_{0} be the initial charge on the capacitor. Use Laplace transform method.

Answer: $i(t)=\left(\frac{E}{R}-\frac{Q_{0}}{R c}\right) e^{-t / R c}$
Q.40. (AMIE S05, 8 marks): In the network, the switch S is closed and a steady state is attained. At $t=0$, the switch is opened. Determine the current through the inductor.

Answer: $i(t)=4 \cos 10^{4} t$
Q.41. (AMIE S09, 5 marks): In following figure, switch S is closed at $t=0$. Switch S_{2} is opened at $t=4 \mathrm{~ms}$. Obtain I for $\mathrm{t}>0$.

Q.42. (AMIE W06, 8 marks): Prove that the Laplace transform of any time function $f(t)$ delayed by time a is $e^{-a s}$ times the transform of the function $\mathrm{F}(\mathrm{s})$.
Q.43. (AMIE W06, 8 marks): A staircase voltage $v(t)$ shown in figure is applied to an RL network consisting of $\mathrm{L}=1 \mathrm{H}$ and $\mathrm{R}=2 \Omega$. Write the equation for the staircase voltage in terms of step function. Find the Laplace transform of $v(t)$. Find the current $i(t)$ in the circuit. Draw the waveform of current $i(t)$. Assume zero current through the inductor L before applying the voltage.

Answer: $u(t-2)+u(t-4)+u(t-6)+u(t-8)+u(t-10)-5 u(t-12)$
Q.44. (AMIE W06, 10, 10 marks): In the given network, switch K is opened at time $t=0$, the steady state having established previously. With switch K open, draw the transform network representing all elements and all initial conditions. Write the transform equation for current in the loop. Also find the current $\mathrm{i}(\mathrm{t})$ in the loop.

Answer: $i(t)=-4 t e^{-2 t}+2 e^{-2 t}$
Q.45. (AMIE W07, 8 marks): In following figure, obtain the expression of transient current using Laplace transform, when the switch is suddenly closed at time $t=0$. Also plot $i(t)$ vs. t.

Answer: $i(t)=5\left(1-e^{-5 t}\right)$
Q.46. (AMIE W07, 12 marks): In given figure, the circuit is connected to voltage source $t=0+$. After 0.1 sec , resistance R_{1} is suddenly short circuited. Using Laplace transform, obtain the expression of current for time $t=$ $0+$ to $t=0.1 \sec$ and $t=0.1 \mathrm{sec}$ to $t=\infty \mathrm{sec}$.

Answer: $i(t)=5.6833-\frac{10}{3} e^{-0.25 t}$
Q.47. (AMIE S08, 12, 8 marks): For the figure shown, find the current $i(t)$ using Laplace transform method. Given that $\mathrm{i}(0+)=2 \mathrm{~A}$ and $\mathrm{v}_{\mathrm{c}}(0+)=4 \mathrm{~V}$.

Answer: $I(s)=\frac{2\left(s^{2}-10 s+8\right)}{\left(s^{2}+4\right)\left(s^{2}+2 s+4\right)}$; Now find inverse Laplace transform using partial fraction method.
Q.48. (AMIE S12, 10 marks): Find an expression for the value of current at any instant after a sinusoidal voltage of amplitude 600 V at 50 Hz applied to a series circuit of resistance 10 ohm and inductance 0.1 Henry, assuming that the voltage is zero at the instant of switching $(\mathrm{t}=0)$. Also, find the value of transient current at $\mathrm{t}=$ 0.02 sec .

Answer: 2.34 Amp.
Hint:

Q.49. (AMIE S08, 10 marks): Find an expression for the value of current at any instant after a sinusoidal voltage of amplitude 600 V at 50 Hz is applied to series circuit of resistance 10Ω and inductance 0.1 H , assuming that the voltage is zero at the instant of switching $(\mathrm{t}=0)$. Also, find the value of transient current at $\mathrm{t}=$ 0.02 sec .

Answer: -97.42 - j[5.915 $\cos 0.066]$
Q.50. (AMIE W11, 10 marks): In a LC circuit shown in figure, the initial current through the inductor being 2 A, the initial voltage is 10 V . Assume $\mathrm{L}=1 \mathrm{H}$ and $\mathrm{C}=0.5 \mathrm{~F}$. Find the voltage across the capacitor at $\mathrm{t}=(0+)$ using Laplace transformation technique.

Answer: $V(t)=10\left[\cos \sqrt{2} t+\frac{1}{\sqrt{2}} \sin \sqrt{2} t\right]$

[^0]: ${ }^{1}$ In some books $X(s)$ or $\mathrm{I}(\mathrm{s})$ is used instead of $\mathrm{F}(\mathrm{s})$.

[^1]: ${ }^{3}$ In some books τ is used instead of λ

